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Abstract. Land-use land-cover (LULC) data are important predictors of species occurrence and biodiversity 
threat. Although there are LULC datasets available under current conditions, there is a lack of such data under 
historical and future climatic conditions. This hinders, for example, projecting niche and distribution models 
under global change scenarios at different time scenarios. The Land Use Harmonization Project (LUH2) is a 
global terrestrial dataset at 0.25o spatial resolution that provides LULC data from 850 to 2300 for 12 LULC state 
classes. The dataset, however, is compressed in a file format (NetCDF) that is incompatible for many analyses 
and intractable for most researchers, requiring layer extractions and transformations of this format. Here we 
selected and transformed the LUH2 in a standard GIS format data to make it more user-friendly. We provide 
LULC for every year from 850 to 2100, and from 2015 on, the LULC dataset is provided under two Shared 
Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5). We provide two types of files for each year: separate files 
with continuous values for each of the 12 LULC state classes, and a single categorical file with all state classes 
combined. To create the categorical layer, we assigned the state with the highest value in a given pixel among 
the 12 continuous data. LUH2 predicts a pronounced decrease in primary forest, particularly noticeable in the 
Amazon, the Brazilian Atlantic Forest, the Congo Basin and the boreal forests, an equally pronounced increase 
in secondary forest and non-forest lands, and in croplands in the Brazilian Atlantic Forest and sub-Saharan Af-
rica. The final dataset provides LULC data for 1251 years that will be of interest for macroecology, ecological 
niche modeling, global change analysis, and other applications in ecology and conservation.
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Introduction
Land-use and land-cover (LULC) change has 

been one of the main drivers of environmental 
change at multiple scales and is currently recog-
nized as an important predictor of anthropogenic im-
pacts and biodiversity threats (Maxwell et al. 2016; 
Prestele et al. 2016; Gomes et al. 2020, 2021; Rosa 
et al. 2021). Mapping land-use land-cover (LULC) 
changes through time is, therefore, important and 
desirable to predict these threats and propose effec-
tive conservation policies (Jetz et al. 2007). LULC 
is also an important predictor of species’ occurrence 
and, thus extensively used in ecological and conser-
vation studies (Eyringet al. 2016; Ruiz-Benito et al. 
2020; Sobral-Souza et al. 2021). There are several 
LULC datasets available at a global scale under cur-

rent conditions, such as the Copernicus (Buchhorn et 
al. 2020), Global Land Survey, the 30 Meter Global 
Land Cover, and the GlobeLand30 (Gutman et al. 
2013; Pengra et al. 2015; Brovelli et al. 2015), as well 
as the near historical period, such as the ESA Climate 
Change Initiative (1992 to 2015), the Finer Resolu-
tion Observation, Monitoring of Global Land Cover 
(1984 to 2011) (Hollmann et al. 2013; Gong et al. 
2013) and GCAM (2015- 2100) (Chen et al. 2020). 
These datasets are usually available in standard Geo-
graphic Information System (GIS) formats (e.g. TIF 
or KMZ), routinely used by landscape ecologists, 
macroecologists, biogeographers, and others (Eyrin-
get al. 2016; Ruiz-Benito et al. 2020; Sobral-Souza 
et al. 2021). However, there is an important gap of 
historical LULC data covering pre-industrial pe-
riods (i.e. older than 1700) and, more importantly, 
projecting LULC changes into the future. Current-* Corresponding author: taina013@gmail.com.
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ly, only two initiatives provide future projections: 
Global Change Analysis Model (Chen et al. 2020) 
and Land-Use Harmonization Project1 (Hurtt et al. 
2006; 2011; 2020), and only the last one provides a 
long historical time-series. The absence of compati-
ble dataset across past, present and future scenarios, 
for example, hinders the use of LULC predictors in 
projections of ecological niche and species distribu-
tion models throughout the time and hamper global 
change analyses (Escobar et al. 2018).

The recent and robust LULC dataset called 
Land-Use Harmonization project is part of the Cou-
pled Model Intercomparison Project (CMIP) (Hurtt 
et al. 2006, 2011, 2020), which coordinates modeling 
experiments worldwide used by the Intergovernmen-
tal Panel on Climate Change (IPCC) (Eyring et al. 
2016). The data is an input to Earth System Models 
(ESMs) to estimate the combined effects of human 
activities on the carbon-climate system. Current-
ly, CMIP datasets are available in NetCDF format, 
a quite complex file format for most researchers. A 
few studies used or analyzed the CMIP LULC (Xia 
& Niu 2020 and references therein), as opposed to 
CMIP’s climate data already simplified on standard 
GIS formats available in WorldClim2 (Fick and Hi-
jmans 2017) and ecoClimate3 (Lima-Ribeiro et al. 
2015). 

The Land-Use Harmonization project (LUH2) 
provides the most complete data in term of time-se-
ries and scenarios of climate change. The data cov-
ers a period from 850 to 2300 at 0.25o spatial res-
olution (ca. 30 km). The first generation of models 
(LUH1, Hurtt et al. 2006; 2011) made future land-use 
land-cover projections under CMIP5’s Representa-
tive Concentration Pathways greenhouse gas scenar-
ios (RCPs, see Vuuren et al. 2011), and the current 
generation of models (LUH2, Hurtt et al. 2020) 
makes projection under CMIP6’s Shared Socioeco-
nomic Pathways greenhouse gas scenarios (SSP, see 
Popp et al. 2017). Both provide data on 12 land-use 
land-cover state classes, including different catego-
ries of natural vegetation, agriculture and urban ar-
eas. In order to make the global Land-Use Harmoni-
zation data more accessible and readily usable, here 
we filtered, combined and transformed it in standard 
GIS formats, making the dataset accessible for us-
ers with standard GIS skills. Besides providing the 
Land-Use Harmonization data in regular GIS format 
1 https://luh.umd.edu/data.shtml. 
2 https://www.worldclim.org/. 
3 https://www.ecoclimate.org/. 

at yearly temporal resolution covering 1251 years of 
past, present and future (from 850 to 2100), we also 
derived new data based on the existing dataset.

Methods
We downloaded the 12 land-use land-cover state 

layers (state.nc) provided in Network Common Data 
Form (NetCDF) from the Land-Use Harmoniza-
tion Project (LUH2): forested primary land (primf), 
non-forested primary land (primn), potentially for-
ested secondary land (secdf), potentially non-forest-
ed secondary land (secdn), managed pasture (pastr), 
rangeland (range), urban land (urban), C3 annual 
crops (c3ann), C3 perennial crops (c3per), C4 annual 
crops (c4ann), C4 perennial crops (c4per), C3 nitro-
gen-fixing crops (c3nfx). The “forested” and “non- 
forested” land-use states are defined on the basis of 
the aboveground standing stock of natural cover; 
where “primary” are lands previously undisturbed 
by human activities, and “secondary” are lands pre-
viously disturbed by human activities and currently 
recovered or in process of recovering of their native 
aspects (see Hurtt et al. 2006; 2011; 2020 for more 
details). They were computed using an account-
ing-based method that tracks the fractional state of 
the land surface in each grid cell as a function of the 
land surface at the previous time step through histor-
ical data. Because it deals with a large and undeter-
mined system, the approach was to solve the system 
for every grid cell at each time step, constraining 
with several inputs including land-use maps, crop 
type and rotation rates, shifting cultivation rates, 
agriculture management, wood harvest, forest tran-
sitions and potential biomass and biomass recovery 
rates (see Fig. S1 in the Supplementary Material for 
details). 

To manipulate the NetCDF files, we used the 
ncdf4 and rgdal packages in R environment (R Core 
Team 2020, Pierce 2019; Hijmans et al. 2020; Bivand 
et al. 2021). We also used the Panoply software ver-
sion 4.84 for quick visualization of the original data 
(states.nc) (Schmunk, 2017). 

We created two sets of files for each year, the 
continuous “state-files” and the categorical “LULC-
files” (Fig.1, Fig.2 and Fig. S2 of supplemental ma-
terial). The state- files are the same data provided in 
the original LUH2 dataset (states.nc), transformed 
into Tag Image File Format (TIFF) and standardized 
for ranging from 0 to 1. We built the new LULC-
files, also in TIFF format, assigning the highest val-
4 https://www.giss.nasa.gov/tools/panoply/.
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ue among the 12 available states to each pixel. For 
instance, if the highest value in a given pixel is the 
forest state value, it was categorically set as a forest 
pixel. Thus, the LULC-files present categories rang-
ing from 1 to 12, which represents each one of the 12 
existing states in the dataset (Table S1 in Supplemen-
tary Material). We generated states-files and LULC-
files for every year from 850 to 2100 for two green-
house gas scenarios: an intermediate (SSP2-4.5) and 
a pessimistic (SSP5-8.5) (see Fig. S2 in Supplemen-
tary Material for the workflow to create state files and 
LULC-files). The SSP2-4.5 scenario, a.k.a “Middle 
of the Road”, represents a 4.5 W/m2 radiative forc-
ing by 2100, where historical development patterns 
continue throughout the 21st century, susceptibility 
to societal and environmental changes remains, and 
greenhouse gas emissions are at intermediate levels. 
The SSP5-8.5, a.k.a. “Fossil-fueled Development”, 
on the other hand, represents the upper limit of the 
SSP scenarios spectrum economic, where social de-
velopment is coupled with the exploitation of abun-
dant fossil fuel resources, an energy-intensive life-
styles, and high levels of greenhouse gas emissions 
(Popp et al. 2017; Meinshausen et al. 2020; Gatti et 
al. 2021).

We performed an accuracy assessment of our 
classification for the LULC-files following Olofsson 
et al.’s (2014) good practices, for the all continents 
together and for Newton and Dale’s (2001) zoogeo-
graphic regions separately. We compared our clas-
sified LULC-file for the year 2000 with that of the 
Global Land Cover SHARE (GLC-SHARE) data, 
used as the ground truth reference data in the accu-
racy assessment. The GLC-SHARE was built from a 
combination of “best available” high resolution na-
tional, regional and/or sub-national land cover data-
bases (Latham et al. 2014), and has a finer spatial res-
olution (1 km) than the LUH2 (30 km). GLC-SHARE 
has 11 classes that are very similar with those from 
the LUH2 database: artificial surfaces (01), cropland 
(02), grassland (03), tree covered areas (04), shrubs 
covered areas (05), herbaceous vegetation, aquatic or 
regularly flooded (06), mangroves (07), sparse vege-
tation (08), bare soil (09), snow and glaciers (10), and 
water bodies (11). To make the two datasets compa-
rable, we reclassified LUH2 and GLC-SHARE to the 
following classes: forest, crops, open areas and urban 
(Fig. 3, Table S1 in Supplementary Material). We also 
masked-out ice and water areas from GLC-SHARE, 
as they do not have an equivalent in the LUH2 data-

Figure 1. Example of state-files data. Continuous forested primary land state for 2020 (top) and 2100 
(bottom) under SSP5-8.5 greenhouse gas scenario, as originally provided by the Land-Use Harmonization 
(LUH2) project. State values range from 0 to 1, roughly representing the likelihood a pixel is occupied by 
the land-use land-cover class depicted in the map. All other state-files have the same structure.

http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
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set. Thus, Greenland was removed from analysis and 
is absent in the LULC-files. We performed the accu-
racy assessment in QGIS 3.20 through a confusion 
matrix error, quantifying the commission and omis-
sion errors for each class, and then computing three 
primary metrics: Overall Accuracy (OA), Producer 
Accuracy (PA) and User Accuracy (UA). We also 
provide other supplemental metrics, such as Kappa, 
Allocation Disagreement and Quantity Disagreement 
using Map Accuracy Tools (Salk et al. 2018) so that 
users can choose the best metric given their purpose 
(see supplementary material, Accuracies).

All codes to perform the analysis are available on 
the GitHub platform (https://github.com/Tai-Rocha/
LUH2_Data). The entire resulting dataset is freely 

available for download at the ecoClimate repository, 
an open database of processed environmental data 
in a suitable resolution and user-friendly format (Li-
ma-Ribeiro et al. 2015).

Results
We generated 17.394 files, 16.056 of which 

are the LUH2 original (continuous data) states files 
transformed into TIFF (Fig. 1), and the other 1.338 
are new (categorical data) LULC-files created by 
combining the 12 states files (). The LULC-files had 
good results for most zoogeographic regions and 
land-use land-cover classes, but not for all (Fig. 3, 
Table 1). The overall accuracy (OA) was over than 
70% for global scale and for most regions, except 

Figure 2. Example of LULC-files data. Categorical LULC for 2020 (top) and 2100 (bottom) under SSP5-8.5 
greenhouse gas scenarios, as a result of the combination of the 12 LUH2 original state classes (state-files) into a 
single map.

Crops forest open areas urban
OA PA UA PA UA PA UA PA UA

Global 71.7 79.7 47.3 70.5 66.8 71.2 82.7 55.5 13.2
Afrotropical 70,9 72.2 15.1 72.4 42.2 70.6 93.9 50.0 2.0
Australasian 82.0 80.5 54.9 91.2 47.0 80.0 98.0 83.3 20.0
Indomalayan 77.7 90.0 77.0 83.2 83.0 58.2 71.3 35.7 9.8
Neartic 71.7 83.1 59.4 61.1 84.3 81.2 66.9 80.9 27.9
Neotropical 65.4 89.5 14.8 87.3 66.9 47.7 88.3 39.2 40.7
Afrotropical 71.4 71.3 53.1 67.7 64.7 73.5 81.2 30.3 4.0

Table 1. Classification accuracy (expressed as percentages) for LULC classes at global scale and biogeographical 
regions. OA: overall accuracy; PA: producer accuracy; UA: user accuracy. See the confusion matrix and accuracy met-
rics in Accuracies.xlsx supplemental file.

http://hdl.handle.net/1808/31846.
https://github.com/Tai-Rocha/LUH2_Data
https://github.com/Tai-Rocha/LUH2_Data
http://hdl.handle.net/1808/31846.
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for the Neotropics, with 65 % overall accuracy. Aus-
tralasia had the highest OA, with 82% accuracy (see 
Table 1 and supplemental material S3 for all metrics 
of accuracy). 

The producer accuracy (PA) and user accuracy 
(UA) for land-use land-cover classes in zoogeograph-
ic regions showed some interesting patterns (Table 
1 and supplemental tables S3). For crops, there was 
good PA (71% to 90%) and poor or moderated UA 
(14% to 59%), except for the Indomalayan region 
(UA = 77%). Forest had moderate to good PA (61% 
to 91%) and poor to good UA (42% to 84%). Open 
area had poor to good PA (47% to 81%), moderate 
to good UA (71% to 93%). Urban areas had poor to 
good PA (30% to 83%) and very poor or poor UA 
(2% to 40%). 

The Land-use Harmonized project shows im-
portant changes in LULC through time (Fig. 1 and 
2), although with no noticeable difference between 
greenhouse gas scenarios within the same year (Fig. 
4). It predicts a pronounced decrease in primary for-
est, and an equally pronounced increase in secondary 
forest and non-forest lands (Fig. 4). The decrease in 
primary forest is particularly noticeable in the Ama-
zon, the Brazilian Atlantic Forest, the Congo Basin 
and the boreal forests (Fig. 1), coupled with an in-

crease in secondary forest in these regions (Fig. 2). A 
predicted increase in C4 annual, C3 nitrogen-fixing 
and C3 perennial crops is especially pronounced in 
the Brazilian Atlantic Forest and sub-Saharan Africa 
(Fig. 2). These crops will apparently replace managed 
pastures in Africa’s Great Lakes region. Finally, there 
is also a specially pronounced predicted decrease 
in non-forested primary land (Fig. 4), especially in 
northern Africa and in the Horn of Africa (Fig. 2). 

Discussion
This data paper is an important contribution, mak-

ing the Land-Use Harmonization project data more 
accessible. Here, we provide a global scale LULC 
dataset with yearly time resolution over a period of 
1251 years (from 850 to 2100), and considerable 
spatial resolution (0.25o long/lat). We contributed not 
only by transforming the data into standard GIS file 
format, but also by providing new categorical data on 
land-use land-cover through a long time period. This 
LULC database provides support for several research 
fields in ecology and biodiversity, by disseminating 
open datasets/open-source tools for a quality, trans-
parent and inclusive science. Our open, ready-to-use 
and user-friendly database will enable a more robust 
integration between climate and land-use change 

Figure 3. Data used in the accuracy assessment of LULC-files. The accuracy of the 
classification of the LULC-file (bottom) assessed using the GLC-SHARE as reference 
data (top). To make the two datasets comparable, both were reclassified to four land-use 
land-cover states for the year 2000 (see Table 1 for reclassification scheme). 

http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
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within biodiversity science (Titeux et al. 2017; Albert 
et al. 2020; Hanna et al. 2020).

Given that overall accuracy is still a widely used 
metric (e.g., Curtis et al. 2018; Gong et al. 2019; Kafy 
et al. 2021; Liu et al. 2021), our LULC-files provide 
good quality data (70% to 82% OA), especially for 
large and coarse scale studies. Besides, we follow the 
best practices suggested by Olofsson et al. (2014) for 
validation, considering a reference map with high-
er quality than the map classification. Validation re-
quires the matching of both maps in terms of classes. 
Thus, we carefully choose a reference map (GLC-
SHARE) that shared similarities with LUH2 in terms 
of number of classes, which we believe reduced the 
biases in the reclassification process. In any case, we 
suggest that users consult Table 1 and supplemental 
file Accuracies.xlsx for classes’ accuracy at different 
zoogeographic regions when performing regional 
analysis.

The most pronounced changes predicted by the 
Land-use Harmonized project between years 2020 
and 2100 are the decrease in primary forest and the 
increase in secondary forest and non-forested lands 
(Fig.4, SSP2-4.5 and SSP5-8.5). It is important to 
note that “primary” refers to intact land, undisturbed 
by human activities since 850, while “secondary” 
refers to land undergoing a transition or recovering 
from previous human activities (Hurrt et al. 2006; 
2011; 2020). A major concern regarding the reduction 
of primary forest is, obviously, habitat loss and asso-
ciated biodiversity decline, specially of rarer species 
(Chase et al. 2020; Horta and Santos 2020; Lima et al. 
2020), in addition to increased greenhouse gas emis-
sions (Mackey et al. 2020) and likelihood of pandem-
ics associated with viral spillover from wildlife to 
humans (Dobson et al. 2020). Predicted forest loss is 
noticeable in the Amazon, Brazilian Atlantic Forest, 
Congo Basin and boreal forests, especially under the 
SSP5-8.5 (Fig .1 and Fig. 2), which is in agreement 
with recent findings. Svensson et al. (2019) found, 
for example, a decrease from 75% to 38% in boreal 
forests between years 1973 and 2013, and Shapiro 
et al. (2021) showed that over 24 million hectares of 
forest were degraded in the Congo Basin between 
years 2000 and 2016. Similar or worse scenarios are 
happening in the Amazon and Atlantic Forest (Junior 
et al. 2021; Rosa et al. 2021). This is happening par-
ticularly inside Brazil, where recent governmental 
actions have promoted deforestation and forest fires 
(Escobar 2019; 2020; Amigo 2020; Silva et al. 2021; 
França et al. 2021; Qin et al. 2021; Vale et al. 2021), 
with record deforestation rates in the Amazon (Junior 
et al. 2021). Although not captured quantitatively at 
the global analysis (Fig.4), another relevant regional 
level prediction is the increase in C4 annual, C3 ni-
trogen-fixing, and C3 perennial crops in the Brazil-
ian Atlantic Forest and sub-Saharan Africa (Fig. 2),. 
Other studies have similar predictions (Zabel et al. 
2019), and the trend is already observed in the Atlan-
tic Forest (Rosa et al. 2021). 

The data provided here provides support for 
several analysis in ecology and biodiversity. The 
continuous data in the state-files may be particular-
ly useful as predictors in ecological niche modeling 
(Peterson et al. 2011) or can be combined to species 
distribution models to reconstruct changes in spe-
cies distributions (Sofaer et al. 2019; Cazaca et al. 
2020). The forested primary land state, for example, 
can be used to model the distribution of forest-de-

Figure 4. Land-use land cover comparison among years and sce-
narios. Data for the LULC-files for year 2020 and 2100 for the 
optimistic (SSP2-4.5, top) and pessimistic (SSP5-8.5, bottom) 
greenhouse gas scenarios, arranged in decreasing order of class 
area in 2020.

http://hdl.handle.net/1808/31846.
http://hdl.handle.net/1808/31846.
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pendent species, as in birds from the Atlantic For-
est biodiversity hotspot (Vale et al. 2018). This data 
has the advantage of being represented in continu-
ous values, as opposed to most discrete land cover 
data (e.g. all datasets cited in this paper), overcoming 
the shortcoming of using categorical data as layers 
in ecological niche modeling (Peterson 2001). More 
importantly, it allows for the use of land cover data 
in projections of species distribution under future cli-
mate change scenarios. Additionally, the categorical 
data in the LULC-files can be useful in ecosystem 
services mapping, especially when working with the 
widely-used InVEST modeling tool5, which is highly 
dependent on land-use land-cover data (Sharp et al. 
2020). The LULC-files can also be used in studies of 
global change impacts from other perspectives (Man-
tyka-Pringle et al. 2015; Titeux et al. 2017; Newbold 
2018; Clerici et al. 2019; Hong et al. 2019; Jetz et al 
2007; Powers and Jetz 2019). Least, but not least, the 
data can help decision-makers in the construction of 
evidence based mitigation and conservation policies 
(Martinez-Fernández et al. 2015; Dong et al. 2018). 
We hope that the dataset provided here, which is free-
ly available for download at the ecoClimate reposi-
tory, can foster the use of land-use land-cover data in 
many and different fields of study. 
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