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Abstract. Land-use land-cover (LULC) data are important predictors of species occurrence and biodiversity
threat. Although there are LULC datasets available under current conditions, there is a lack of such data under
historical and future climatic conditions. This hinders, for example, projecting niche and distribution models
under global change scenarios at different time scenarios. The Land Use Harmonization Project (LUH2) is a
global terrestrial dataset at 0.25° spatial resolution that provides LULC data from 850 to 2300 for 12 LULC state
classes. The dataset, however, is compressed in a file format (NetCDF) that is incompatible for many analyses
and intractable for most researchers, requiring layer extractions and transformations of this format. Here we
selected and transformed the LUH2 in a standard GIS format data to make it more user-friendly. We provide
LULC for every year from 850 to 2100, and from 2015 on, the LULC dataset is provided under two Shared
Socioeconomic Pathways (SSP2-4.5 and SSP5-8.5). We provide two types of files for each year: separate files
with continuous values for each of the 12 LULC state classes, and a single categorical file with all state classes
combined. To create the categorical layer, we assigned the state with the highest value in a given pixel among
the 12 continuous data. LUH2 predicts a pronounced decrease in primary forest, particularly noticeable in the
Amazon, the Brazilian Atlantic Forest, the Congo Basin and the boreal forests, an equally pronounced increase
in secondary forest and non-forest lands, and in croplands in the Brazilian Atlantic Forest and sub-Saharan Af-
rica. The final dataset provides LULC data for 1251 years that will be of interest for macroecology, ecological
niche modeling, global change analysis, and other applications in ecology and conservation.
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INTRODUCTION

Land-use and land-cover (LULC) change has
been one of the main drivers of environmental
change at multiple scales and is currently recog-
nized as an important predictor of anthropogenic im-
pacts and biodiversity threats (Maxwell et al. 2016;
Prestele et al. 2016; Gomes et al. 2020, 2021; Rosa
et al. 2021). Mapping land-use land-cover (LULC)
changes through time is, therefore, important and
desirable to predict these threats and propose effec-
tive conservation policies (Jetz et al. 2007). LULC
is also an important predictor of species’ occurrence
and, thus extensively used in ecological and conser-
vation studies (Eyringet al. 2016; Ruiz-Benito et al.
2020; Sobral-Souza et al. 2021). There are several
LULC datasets available at a global scale under cur-
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rent conditions, such as the Copernicus (Buchhorn et
al. 2020), Global Land Survey, the 30 Meter Global
Land Cover, and the GlobeLand30 (Gutman et al.
2013; Pengra et al. 2015; Brovelli et al. 2015), as well
as the near historical period, such as the ESA Climate
Change Initiative (1992 to 2015), the Finer Resolu-
tion Observation, Monitoring of Global Land Cover
(1984 to 2011) (Hollmann et al. 2013; Gong et al.
2013) and GCAM (2015- 2100) (Chen et al. 2020).
These datasets are usually available in standard Geo-
graphic Information System (GIS) formats (e.g. TIF
or KMZ), routinely used by landscape ecologists,
macroecologists, biogeographers, and others (Eyrin-
get al. 2016; Ruiz-Benito et al. 2020; Sobral-Souza
et al. 2021). However, there is an important gap of
historical LULC data covering pre-industrial pe-
riods (i.e. older than 1700) and, more importantly,
projecting LULC changes into the future. Current-
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ly, only two initiatives provide future projections:
Global Change Analysis Model (Chen et al. 2020)
and Land-Use Harmonization Project' (Hurtt et al.
2006; 2011; 2020), and only the last one provides a
long historical time-series. The absence of compati-
ble dataset across past, present and future scenarios,
for example, hinders the use of LULC predictors in
projections of ecological niche and species distribu-
tion models throughout the time and hamper global
change analyses (Escobar et al. 2018).

The recent and robust LULC dataset called
Land-Use Harmonization project is part of the Cou-
pled Model Intercomparison Project (CMIP) (Hurtt
et al. 2006, 2011, 2020), which coordinates modeling
experiments worldwide used by the Intergovernmen-
tal Panel on Climate Change (IPCC) (Eyring et al.
2016). The data is an input to Earth System Models
(ESMs) to estimate the combined effects of human
activities on the carbon-climate system. Current-
ly, CMIP datasets are available in NetCDF format,
a quite complex file format for most researchers. A
few studies used or analyzed the CMIP LULC (Xia
& Niu 2020 and references therein), as opposed to
CMIP’s climate data already simplified on standard
GIS formats available in WorldClim? (Fick and Hi-
jmans 2017) and ecoClimate® (Lima-Ribeiro et al.
2015).

The Land-Use Harmonization project (LUH2)
provides the most complete data in term of time-se-
ries and scenarios of climate change. The data cov-
ers a period from 850 to 2300 at 0.25° spatial res-
olution (ca. 30 km). The first generation of models
(LUHI, Hurtt et al. 2006; 2011) made future land-use
land-cover projections under CMIP5’s Representa-
tive Concentration Pathways greenhouse gas scenar-
ios (RCPs, see Vuuren et al. 2011), and the current
generation of models (LUH2, Hurtt et al. 2020)
makes projection under CMIP6’s Shared Socioeco-
nomic Pathways greenhouse gas scenarios (SSP, see
Popp et al. 2017). Both provide data on 12 land-use
land-cover state classes, including different catego-
ries of natural vegetation, agriculture and urban ar-
eas. In order to make the global Land-Use Harmoni-
zation data more accessible and readily usable, here
we filtered, combined and transformed it in standard
GIS formats, making the dataset accessible for us-
ers with standard GIS skills. Besides providing the
Land-Use Harmonization data in regular GIS format

! https://luh.umd.edu/data.shtml.

2 https://www.worldclim.org/.
3 https://www.ecoclimate.org/.

at yearly temporal resolution covering 1251 years of
past, present and future (from 850 to 2100), we also
derived new data based on the existing dataset.

METHODS

We downloaded the 12 land-use land-cover state
layers (state.nc) provided in Network Common Data
Form (NetCDF) from the Land-Use Harmoniza-
tion Project (LUH2): forested primary land (primf),
non-forested primary land (primn), potentially for-
ested secondary land (secdf), potentially non-forest-
ed secondary land (secdn), managed pasture (pastr),
rangeland (range), urban land (urban), C3 annual
crops (c3ann), C3 perennial crops (c3per), C4 annual
crops (c4ann), C4 perennial crops (c4per), C3 nitro-
gen-fixing crops (c3nfx). The “forested” and “non-
forested” land-use states are defined on the basis of
the aboveground standing stock of natural cover;
where “primary” are lands previously undisturbed
by human activities, and “secondary” are lands pre-
viously disturbed by human activities and currently
recovered or in process of recovering of their native
aspects (see Hurtt et al. 2006; 2011; 2020 for more
details). They were computed using an account-
ing-based method that tracks the fractional state of
the land surface in each grid cell as a function of the
land surface at the previous time step through histor-
ical data. Because it deals with a large and undeter-
mined system, the approach was to solve the system
for every grid cell at each time step, constraining
with several inputs including land-use maps, crop
type and rotation rates, shifting cultivation rates,
agriculture management, wood harvest, forest tran-
sitions and potential biomass and biomass recovery
rates (see Fig. S1 in the Supplementary Material for
details).

To manipulate the NetCDF files, we used the
ncdf4 and rgdal packages in R environment (R Core
Team 2020, Pierce 2019; Hijmans et al. 2020; Bivand
et al. 2021). We also used the Panoply software ver-
sion 4.8 for quick visualization of the original data
(states.nc) (Schmunk, 2017).

We created two sets of files for each year, the
continuous “state-files” and the categorical “LULC-
files” (Fig.1, Fig.2 and Fig. S2 of supplemental ma-
terial). The state- files are the same data provided in
the original LUH2 dataset (states.nc), transformed
into Tag Image File Format (TIFF) and standardized
for ranging from 0 to 1. We built the new LULC-
files, also in TIFF format, assigning the highest val-

4 https://www.giss.nasa.gov/tools/panoply/.
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Figure 1. Example of state-files data. Continuous forested primary land state for 2020 (top) and 2100
(bottom) under SSP5-8.5 greenhouse gas scenario, as originally provided by the Land-Use Harmonization
(LUH2) project. State values range from 0 to 1, roughly representing the likelihood a pixel is occupied by

the land-use land-cover class depicted in the map. All other state-files have the same structure.

ue among the 12 available states to each pixel. For
instance, if the highest value in a given pixel is the
forest state value, it was categorically set as a forest
pixel. Thus, the LULC-files present categories rang-
ing from 1 to 12, which represents each one of the 12
existing states in the dataset (Table S1 in Supplemen-
tary Material). We generated states-files and LULC-
files for every year from 850 to 2100 for two green-
house gas scenarios: an intermediate (SSP2-4.5) and
a pessimistic (SSP5-8.5) (see Fig. S2 in Supplemen-
tary Material for the workflow to create state files and
LULC-files). The SSP2-4.5 scenario, a.k.a “Middle
of the Road”, represents a 4.5 W/m? radiative forc-
ing by 2100, where historical development patterns
continue throughout the 21 century, susceptibility
to societal and environmental changes remains, and
greenhouse gas emissions are at intermediate levels.
The SSP5-8.5, ak.a. “Fossil-fueled Development”,
on the other hand, represents the upper limit of the
SSP scenarios spectrum economic, where social de-
velopment is coupled with the exploitation of abun-
dant fossil fuel resources, an energy-intensive life-
styles, and high levels of greenhouse gas emissions
(Popp et al. 2017; Meinshausen et al. 2020; Gatti et
al. 2021).

We performed an accuracy assessment of our
classification for the LULC-files following Olofsson
et al.’s (2014) good practices, for the all continents
together and for Newton and Dale’s (2001) zoogeo-
graphic regions separately. We compared our clas-
sified LULC-file for the year 2000 with that of the
Global Land Cover SHARE (GLC-SHARE) data,
used as the ground truth reference data in the accu-
racy assessment. The GLC-SHARE was built from a
combination of “best available” high resolution na-
tional, regional and/or sub-national land cover data-
bases (Latham et al. 2014), and has a finer spatial res-
olution (1 km) than the LUH2 (30 km). GLC-SHARE
has 11 classes that are very similar with those from
the LUH2 database: artificial surfaces (01), cropland
(02), grassland (03), tree covered areas (04), shrubs
covered areas (05), herbaceous vegetation, aquatic or
regularly flooded (06), mangroves (07), sparse vege-
tation (08), bare soil (09), snow and glaciers (10), and
water bodies (11). To make the two datasets compa-
rable, we reclassified LUH2 and GLC-SHARE to the
following classes: forest, crops, open areas and urban
(Fig. 3, Table S1 in Supplementary Material). We also
masked-out ice and water areas from GLC-SHARE,
as they do not have an equivalent in the LUH2 data-
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Figure 2. Example of LULC-files data. Categorical LULC for 2020 (top) and 2100 (bottom) under SSP5-8.5
greenhouse gas scenarios, as a result of the combination of the 12 LUH2 original state classes (state-files) into a

single map.

set. Thus, Greenland was removed from analysis and
is absent in the LULC-files. We performed the accu-
racy assessment in QGIS 3.20 through a confusion
matrix error, quantifying the commission and omis-
sion errors for each class, and then computing three
primary metrics: Overall Accuracy (OA), Producer
Accuracy (PA) and User Accuracy (UA). We also
provide other supplemental metrics, such as Kappa,
Allocation Disagreement and Quantity Disagreement
using Map Accuracy Tools (Salk et al. 2018) so that
users can choose the best metric given their purpose
(see supplementary material, Accuracies).

All codes to perform the analysis are available on
the GitHub platform (https://github.com/Tai-Rocha/
LUH2_Data). The entire resulting dataset is freely

available for download at the ecoClimate repository,
an open database of processed environmental data
in a suitable resolution and user-friendly format (Li-
ma-Ribeiro et al. 2015).

REsuLTS

We generated 17.394 files, 16.056 of which
are the LUH2 original (continuous data) states files
transformed into TIFF (Fig. 1), and the other 1.338
are new (categorical data) LULC-files created by
combining the 12 states files (). The LULC-files had
good results for most zoogeographic regions and
land-use land-cover classes, but not for all (Fig. 3,
Table 1). The overall accuracy (OA) was over than
70% for global scale and for most regions, except

Table 1. Classification accuracy (expressed as percentages) for LULC classes at global scale and biogeographical
regions. OA: overall accuracy; PA: producer accuracy; UA: user accuracy. See the confusion matrix and accuracy met-

rics in Accuracies.xlsx supplemental file.

Crops forest open areas urban

OA PA UA PA UA PA UA PA UA
Global 71.7 79.7 473 70.5 66.8 71.2 82.7 55.5 13.2
Afrotropical 70,9 72.2 15.1 72.4 422 70.6 93.9 50.0 2.0
Australasian 82.0 80.5 54.9 91.2 47.0 80.0 98.0 83.3 20.0
Indomalayan 77.7 90.0 77.0 83.2 83.0 58.2 71.3 35.7 9.8
Neartic 71.7 83.1 59.4 61.1 84.3 81.2 66.9 80.9 27.9
Neotropical 65.4 89.5 14.8 87.3 66.9 47.7 88.3 39.2 40.7
Afrotropical 71.4 71.3 53.1 67.7 64.7 73.5 81.2 30.3 4.0



http://hdl.handle.net/1808/31846.
https://github.com/Tai-Rocha/LUH2_Data
https://github.com/Tai-Rocha/LUH2_Data
http://hdl.handle.net/1808/31846.

Biodiversity Informatics, 16, 2021, pp. 28-38

Reclassified reference map
(GLC-SHARE)

Reclassified LULC map
(LUH2)

[ Zoogeographic regions

Il Forest
771 Crops
7] Open areas
Il Urban

Figure 3. Data used in the accuracy assessment of LULC-files. The accuracy of the
classification of the LULC-file (bottom) assessed using the GLC-SHARE as reference
data (top). To make the two datasets comparable, both were reclassified to four land-use
land-cover states for the year 2000 (see Table 1 for reclassification scheme).

for the Neotropics, with 65 % overall accuracy. Aus-
tralasia had the highest OA, with 82% accuracy (see
Table 1 and supplemental material S3 for all metrics
of accuracy).

The producer accuracy (PA) and user accuracy
(UA) for land-use land-cover classes in zoogeograph-
ic regions showed some interesting patterns (Table
1 and supplemental tables S3). For crops, there was
good PA (71% to 90%) and poor or moderated UA
(14% to 59%), except for the Indomalayan region
(UA = 77%). Forest had moderate to good PA (61%
to 91%) and poor to good UA (42% to 84%). Open
area had poor to good PA (47% to 81%), moderate
to good UA (71% to 93%). Urban areas had poor to
good PA (30% to 83%) and very poor or poor UA
(2% to 40%).

The Land-use Harmonized project shows im-
portant changes in LULC through time (Fig. 1 and
2), although with no noticeable difference between
greenhouse gas scenarios within the same year (Fig.
4). It predicts a pronounced decrease in primary for-
est, and an equally pronounced increase in secondary
forest and non-forest lands (Fig. 4). The decrease in
primary forest is particularly noticeable in the Ama-
zon, the Brazilian Atlantic Forest, the Congo Basin
and the boreal forests (Fig. 1), coupled with an in-

crease in secondary forest in these regions (Fig. 2). A
predicted increase in C4 annual, C3 nitrogen-fixing
and C3 perennial crops is especially pronounced in
the Brazilian Atlantic Forest and sub-Saharan Africa
(Fig. 2). These crops will apparently replace managed
pastures in Africa’s Great Lakes region. Finally, there
is also a specially pronounced predicted decrease
in non-forested primary land (Fig. 4), especially in
northern Africa and in the Horn of Africa (Fig. 2).

DiscUssION

This data paper is an important contribution, mak-
ing the Land-Use Harmonization project data more
accessible. Here, we provide a global scale LULC
dataset with yearly time resolution over a period of
1251 years (from 850 to 2100), and considerable
spatial resolution (0.25°long/lat). We contributed not
only by transforming the data into standard GIS file
format, but also by providing new categorical data on
land-use land-cover through a long time period. This
LULC database provides support for several research
fields in ecology and biodiversity, by disseminating
open datasets/open-source tools for a quality, trans-
parent and inclusive science. Our open, ready-to-use
and user-friendly database will enable a more robust
integration between climate and land-use change
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Figure 4. Land-use land cover comparison among years and sce-
narios. Data for the LULCfiles for year 2020 and 2100 for the
optimistic (SSP2-4.5, top) and pessimistic (SSP5-8.5, bottom)
greenhouse gas scenarios, arranged in decreasing order of class
area in 2020.

within biodiversity science (Titeux et al. 2017; Albert
et al. 2020; Hanna et al. 2020).

Given that overall accuracy is still a widely used
metric (e.g., Curtis et al. 2018; Gong et al. 2019; Kafy
et al. 2021; Liu et al. 2021), our LULC-files provide
good quality data (70% to 82% OA), especially for
large and coarse scale studies. Besides, we follow the
best practices suggested by Olofsson et al. (2014) for
validation, considering a reference map with high-
er quality than the map classification. Validation re-
quires the matching of both maps in terms of classes.
Thus, we carefully choose a reference map (GLC-
SHARE) that shared similarities with LUH2 in terms
of number of classes, which we believe reduced the
biases in the reclassification process. In any case, we
suggest that users consult Table 1 and supplemental
file Accuracies.xlsx for classes’ accuracy at different
zoogeographic regions when performing regional
analysis.

The most pronounced changes predicted by the
Land-use Harmonized project between years 2020
and 2100 are the decrease in primary forest and the
increase in secondary forest and non-forested lands
(Fig.4, SSP2-4.5 and SSP5-8.5). It is important to
note that “primary” refers to intact land, undisturbed
by human activities since 850, while “secondary”
refers to land undergoing a transition or recovering
from previous human activities (Hurrt et al. 2006;
2011;2020). A major concern regarding the reduction
of primary forest is, obviously, habitat loss and asso-
ciated biodiversity decline, specially of rarer species
(Chase et al. 2020; Horta and Santos 2020; Lima et al.
2020), in addition to increased greenhouse gas emis-
sions (Mackey et al. 2020) and likelihood of pandem-
ics associated with viral spillover from wildlife to
humans (Dobson et al. 2020). Predicted forest loss is
noticeable in the Amazon, Brazilian Atlantic Forest,
Congo Basin and boreal forests, especially under the
SSP5-8.5 (Fig .1 and Fig. 2), which is in agreement
with recent findings. Svensson et al. (2019) found,
for example, a decrease from 75% to 38% in boreal
forests between years 1973 and 2013, and Shapiro
et al. (2021) showed that over 24 million hectares of
forest were degraded in the Congo Basin between
years 2000 and 2016. Similar or worse scenarios are
happening in the Amazon and Atlantic Forest (Junior
et al. 2021; Rosa et al. 2021). This is happening par-
ticularly inside Brazil, where recent governmental
actions have promoted deforestation and forest fires
(Escobar 2019; 2020; Amigo 2020; Silva et al. 2021;
Franga et al. 2021; Qin et al. 2021; Vale et al. 2021),
with record deforestation rates in the Amazon (Junior
et al. 2021). Although not captured quantitatively at
the global analysis (Fig.4), another relevant regional
level prediction is the increase in C4 annual, C3 ni-
trogen-fixing, and C3 perennial crops in the Brazil-
ian Atlantic Forest and sub-Saharan Africa (Fig. 2),.
Other studies have similar predictions (Zabel et al.
2019), and the trend is already observed in the Atlan-
tic Forest (Rosa et al. 2021).

The data provided here provides support for
several analysis in ecology and biodiversity. The
continuous data in the state-files may be particular-
ly useful as predictors in ecological niche modeling
(Peterson et al. 2011) or can be combined to species
distribution models to reconstruct changes in spe-
cies distributions (Sofaer et al. 2019; Cazaca et al.
2020). The forested primary land state, for example,
can be used to model the distribution of forest-de-
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pendent species, as in birds from the Atlantic For-
est biodiversity hotspot (Vale et al. 2018). This data
has the advantage of being represented in continu-
ous values, as opposed to most discrete land cover
data (e.g. all datasets cited in this paper), overcoming
the shortcoming of using categorical data as layers
in ecological niche modeling (Peterson 2001). More
importantly, it allows for the use of land cover data
in projections of species distribution under future cli-
mate change scenarios. Additionally, the categorical
data in the LULC-files can be useful in ecosystem
services mapping, especially when working with the
widely-used InVEST modeling tool®, which is highly
dependent on land-use land-cover data (Sharp et al.
2020). The LULC-files can also be used in studies of
global change impacts from other perspectives (Man-
tyka-Pringle et al. 2015; Titeux et al. 2017; Newbold
2018; Clerici et al. 2019; Hong et al. 2019; Jetz et al
2007; Powers and Jetz 2019). Least, but not least, the
data can help decision-makers in the construction of
evidence based mitigation and conservation policies
(Martinez-Fernandez et al. 2015; Dong et al. 2018).
We hope that the dataset provided here, which is free-
ly available for download at the ecoClimate reposi-
tory, can foster the use of land-use land-cover data in
many and different fields of study.
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